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Synopsis

The field equations of general relativity for a static fluid sphere composed of ideal gas and 
radiation are solved numerically under the assumption that the fluid is at thermal equilibrium 
throughout a configuration. The law of thermal equilibrium is used in the general relativistic 
form.
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1. Introduction

Only few solutions describing the static gravitational field inside a spher
ical mass distribution are known. This is caused by the complicated 

non-linear character of the field equations. In order to ensure solutions in 
terms of known functions, one has been obliged to pay more attention to 
a mathematical simplification than to a physical situation. Therefore the 
resulting solutions, derived by R. C. Tolman*1), M. Wyman*2) and B. Kucno- 
wicz* 3), are not of much physical interest.

A more satisfactory procedure is to use an equation of state as an auxil
iary equation. The system of equations can then be solved only numerically. 
The simplest cases are the relativistic generalizations of the classical poly
tropic, standard and isothermal fluid spheres. A polytropic fluid sphere 
where the pressure and energy density are connected by a power law, has 
been examined by R. F. Tooper*4- 5). He has also examined a standard 
model where the ratio of the gas pressure to the total pressure is constant 
throughout a configuration* 6). A fluid sphere obeying an isothermal equation 
of state has been studied by M. L. Mehra*7). However, it appears that there 
are some errors in Meiira’s paper. Meiira has not taken into account the 
microscopic kinetic energy of the gas. The law of thermal equilibrium has 
been used in the classical form. The boundary conditions are not satis
factory, either.

In the present paper a relativistic treatment for a fluid sphere where 
the matter is at thermal equilibrium, is given again. The proper temperature 
of the fluid as measured by local observers is not constant throughout a 
sphere, but varies with gravitational potential according to the general rel
ativistic law of thermal equilibrium* 8). The conditions under which thermal 
equilibrium might arise are not examined in this paper. The dynamical 
stability of a relativistic ‘isothermal’ sphere is not investigated, either.

In section 2 the general relativistic equations of mechanical equilibrium 
are given for a spherically symmetric, static system. Using the relativistic, 
statistical expressions for the pressure and energy density* 9), the equations 
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of state are derived for a mixture of ideal gas and radiation in section 3. 
'flic equations of mechanical equilibrium are transformed in a suitable 
dimensionless form in section 4. In section 5 the radius, mass, and pressure 
distribution are expressed in terms of dimensionless variables. The equilib
rium equations have been integrated numerically, and results are given and 
discussed in section 6.

2. Equations of Mechanical Equilibrium

Any lime-independent, spherically symmetric general relativistic metric 
can be transformed to the standard form

(2)= i P i

ds2 = — e^dr2 — r2(dd2 + sin2#c/ç?2) + evc2dt2, (1)

where the functions and ev depend on the radial coordinate r only. As
suming the expression for the energy-momentum tensor

where quantities u1, p and q are the fluid 4-velocity, pressure and total mass 
density, respectively, the gravitational field equations reduce in the metric 
(1) to

1 8ttG
"2 = ~T 79r2 c4 (3)

1  J d2v 1 /dv
2e |dr2 + 2\dr

dX\/dv 2\l 8jiG
drj\dr r/^ c4 (4)

(5)

Here G is the Newtonian gravitational constant. Setting eqs. (3) and (4) 
equal to each other and making use of eq. (5), lead to the relation

dp 1 dv
— + -(øc2 +p) — = 0. 
dr 2 dr (6)
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Relation (6) follows also from the conservation of the energy-momentum. 
Eqs. (3), (5) and (6) are the relativistic conditions for mechanical equilib
rium which, together with an equation of state, form the full set for deter
mination of e\ ev, p and o as functions of the coordinate r.

3. Equations of State

The total pressure and the total mass density of a fluid sphere consisting 
of ideal gas and radiation are

P = Pg +Pr (7)

Q = Qg + Qr> (8)

where quantities belonging to ideal gas and radiation are denoted with 
indexes g and r.

A relativistic ideal gas consisting of identical particles has the following
equations of state<9)

7+ QgC2 = - ^3<T) (9)

7 Z X
- = ^Ä2(T)' (10)

Here we denote
/zc2 

T = Wr’ (H)

å\(t) are modified Bessel functions of the second kind; y is a coefficient 
depending on nature constants and on the chemical potential; sJt is the gas 
constant; /z is the mean molecular weight; o0 is the rest-mass density, and T 
is the proper temperature measured in a fluid comoving system of coor
dinates. Using the recurrence relation

K3(t) = Æi(t) + -Æ2(t),
T

we obtain from eqs. (9) and (10) the expression for ogc2:

(12)
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The pressure and energy density of radiation are expressed by

(13)

(14)

where a is the radiation constant.
For a mixture of ideal gas and radiation we get from eqs. (7), (8), (10), 

(13) and (14) the equations of state

p + QC
4

2 = +
3

(äT(t) 4\
kA2(r) + t/ (15)

P =
1 »
-aT4 + -q0T.
3 u (16)

4. Equations of Mechanical Equilibrium in Dimensionless Form

From the general relativistic law of thermal equilibrium* 8)

we obtain a relation
T(j744)1/2 = Tevl‘i = constant

dv 2 dT
dr T dr

(17)

(18)

which, substituted in eq. (6), gives

dp (qc2 + p) dT 
dr T dr (19)

Inserting expressions (15) and (16) in eq. (19), we obtain after a simplifica
tion

1 dQo _ 1/ 3 + T7<i(T)\dr
Qo dr T\ K2(t)! dr (20)
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Eq. (20) is difficult to integrate due to the presence of functions 7<i(t) and 
7<2(t). However, in the case of large argument r, we have a convenient 
approximation for /^(r)* 10);

An(r)

from which

(4n2 — 1)(4n2 — 3)
2! (8t)2 + ‘ ’ I

Ai(t) ^ 3

AT(t) 2t

(21)

(22)

This approximation can be used for all constituents of the fluid below the 
limit T = 109 degrees where r = 5.9 for electrons and positrons. For all 
constituents except electrons and positrons, extension (21) is valid for 
T < 1012 degrees. But in any case we must restrict the treatment to tem
peratures below 2-IO9 degrees, because above this limit the neutrino emis
sion carries so much energy away that equilibrium is disturbed* 11).

Using expression (22), eq. (20) becomes

1 (Iqq 1/3 \dT 

o0 dr T\2 / dr

which can be integrated to give

Qo = AT3'2^’'3’2’.

(23)

(24)

The constant A of integration is determined by initial conditions. Denoting 
the rest mass density and the proper temperature at the centre by qOc and 
Tc, we obtain

@oc \T(J (25)

Eq. (5), which can be written also in the form 

d(re“2)
~dr (26)

can be integrated only formally because the distribution of the energy 
density is unknown. We define a new function 4f(r) by

r
M(r) = J*  47r^r2dr. (27)

0
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Function JZ(r) represents the total mass arising from the density q and 
from the gravitational field, inclosed by the sphere of coordinate radius r. 
Integrating eq. (26), we get

2GM(r)
c2r

(28)

In terms of function M, eq. (26) becomes

dM
— = 47wr2.
c7r

(29)

Substituting the expression 
eq. (29), we obtain

dM
dr

of density q from eqs. (13), (14) and (22) in

(30)

Insertion of eqs. (18) and (28) in eq. (3) gives

1
(31)

Using the expression
c2

(32)^oc2

r2r2
1 8nG

-^p-

obtained from eqs. (15), (16), (22) and (29), eq. (31) becomes

2GM\r dT
c2r )t dr

GM G dM
c2r 3 c2 dr

•ItiG/ 1
“^3

A change of variables

(33)

(34)

where

B3M(r)

4^0c
(35)

(36)
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puts eqs. (30) and (33) in dimensionless form. Substituting new variables 
x and v in eqs. (30) and (33), we obtain the following first order differential 
equations

\ 2//c2/eocJ (37)

q0cc2 2v\x2 (IT xdv
------- ------- I---------- _|_ p _|_--------
4pc x T dx 3 dx .3 2pc2 qOc

(38)

Using eq. (37), eq. (38) can be written also in the form

(39)X'

where we denote

= 4 (40)c = 4pc
Qocc2

In terms of variables x and v, the following expression for the metric com
ponent |<711| = is found from eq. (28)

(41)

5. Physical quantities

The element of spatial distance measured with a standard measuring
rod is given by<12)

(42)

In the metric (1), the metric components are equal to zero, and the 
physical distance from the centre to a point with radial coordinate r is from 
eqs. (34), (41) and (42),

or measured in units of the radius of the sun Rø = 6.96-1010 cm

(43)
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(44)

where we have also used eqs. (36) and (40). For the mass inside a sphere 
of the radius r we obtain from eqs. (35) and (36) the expression

M = ^Pc3/2__
^/2G3/2qQc2

v(x) = 2.22-108Mo (45)

where Mq = 1.985-IO33# is the mass of the sun. The expression for the 
pressure distribution 

p 4 / aT4 NT q0 

Pc cWoe2 /zc2e0c

1 / o 7,4- 1.13 • 10-3— + 
C\ Qoc

(46)

is found from eqs. (16) and (40).

6. Numerical Results and Discussion

Eqs. (37) and (39) were integrated numerically under the initial conditions 
p(0) = 0 and T(0) = Tc using the Runge-Kutta method. The molecular 
weight was taken to be 0.5, corresponding to purely hydrogen configura
tions. Simultaneously with the determinations of functions u(æ) and 7’(x) 
integral (43) for the physical radius R was calculated. The values of the 
radial metric component |^n| = mass and normalized pressure were 
obtained from eqs. (41), (45) and (46). For the calculation of the metric 
component p44 = ev from eq. (17), it was assumed that, far from the centre, 
the relation |pn| = is valid.

Numerical results in an appropriate case are shown graphically in 
Fig. 1. The physical radius R is used as the independent variable, so that 
the geometrical effects arising from the presence of gravitating matter have 
been taken into account in preparing the graphs.

The behaviour of the results differs in several respects from the corre
sponding classical case. In spile of thermal equilibrium, the proper temper
ature measured in a fluid comoving system of coordinates, decreases mo
notonically as a function of radius. The matter is concentrated more mark-
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Fig. 1. Metric components, temperature and pressure as functions of the physical radius, when 
central temperature Tc = 109 degrees.

edly toward the centre than in a classical isothermal sphere. The normalized 
pressure and total density fall off rapidly in an outward direction. The 
metric components and ev differ strongly from their Euclidian values. 
The radial component | gn | = increases from its minimum value unity 
at the centre to the first and highest maximum, goes down to the lowest 
minimum, and then oscillates moderately. The time component ev is always 
less than unity, and is a monotonically increasing function of radius.

In Tables 1 and 2 the values of the radius, mass and normalized tem
perature and pressure are given, corresponding to the first maximum and 
second minimum of e for three central temperatures. Eqs. (37) and (39) 
include besides the central temperature Tc, the central rest mass density 
qOc as another parameter. The rest mass density originates from the gas 
pressure term in the expression of the total pressure. The ratio of gas pres
sure to radiation pressure decreases very rapidly as a function of radius. 
Even in cases where gas pressure dominates over radiation pressure at the 
centre, it is negligible quite soon outside the centre. This is caused by an 
exponential decrease of the rest mass density with respect to the proper 
temperature, which is found in eq. (25). For this reason, the metric tensor
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Table 1. Radius, mass, normalized temperature and pressure corresponding 
to the first maximum of e\

Tc M/Mq T/Tc PIPc eÂ

108 4.8T04 4.4-IO9 0.45 0.041 1.965
5-108 2.0-108 1.8-108 0.45 0.041 1.965

109 4.8-102 4.4-107 0.45 0.041 1.965

Table 2. Radius, mass, normalized temperature and pressure corresponding 
to the second minimum of e .

Tc M/Mq r/Tc P/Pc eÂ

108 3.0-105 2.2T010 0.18 1.0-IO-4 1.690
5-108 1.2-104 9.1-108 0.18 1.0-10“4 1.690

109 3.0-103 2.2-108 0.18 1.1-IO-4 1.690

components and physical parameters are nearly independent of the central 
rest mass density.

It is seen from tables 1 and 2 that the maximum and minimum values 
of the metric component e and the corresponding values of the normalized 
temperature and pressure are independent of the central temperature. The 
physical radius and mass are approximately inverse to the square of the 
central temperature. This is valid, not only for the maximum and minimum 
values of e , but everywhere. Because of the similar feature of the graphs 
for different central temperatures, we have shown the results graphically 
only in one special case.

The condition of thermal equilibrium leads to very massive configura
tions. Such fluid spheres extend to infinity, like classical isothermal models. 
However, it might be possible to develop theoretical models of a moderately 
long time-scale where the inner parts are at mechanical and thermal equilib
rium, but the outer layers are away from equilibrium. The radial pulsations 
at the surface should correspond to a “stellar wind’’.

NORDITA, Copenhagen.
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